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The mathematics of K -conserving functional differentiation, with K being the inte-
gral of some invertible function of the functional variable, is clarified. The most gen-
eral form for constrained functional derivatives is derived from the requirement that
two functionals that are equal over a restricted domain have equal derivatives over that
domain. It is shown that the K -conserving derivative formula is the one that yields
no effect of K -conservation on the differentiation of K -independent functionals, which
gives the basis for its generalization for multiple constraints. Connections with the
derivative with respect to the shape of the functional variable and with the shape-con-
serving derivative, together with their use in the density-functional theory of many-
electron systems, are discussed. Yielding an intuitive interpretation of K -conserving
functional derivatives, it is also shown that K -conserving derivatives emerge as direc-
tional derivatives along K -conserving paths, which is achieved via a generalization of
the Gâteaux derivative for that kind of paths. These results constitute the background
for the practical application of K -conserving differentiation.
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1. Introduction

Constraints on distributions ρ(x) in some space limit the changes of
physical quantities depending on the distributions in many fields of physics. If
functional differentiation with respect to ρ(x) is involved in the given physi-
cal theory, a proper treatment of the constraints on ρ(x) by the differentia-
tion becomes necessary. In [1,2], for that proper treatment, the mathematical
formula

δA[ρ]
δK ρ(x)

= δA[ρ]
δρ(x)

− f (1)(ρ(x))

K

∫
f (ρ(x ′))

f (1)(ρ(x ′))
δA[ρ]
δρ(x ′)

dx ′ (1)
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(with δA[ρ]
δρ(x)

the unconstrained functional derivative of the functional A[ρ]) for
constrained functional differentiation, under constraints of the form

∫
f (ρ(x))dx = K (2)

(where an explicit x-dependence of f is allowed as well, though not denoted for
simplicity), has been derived via the decomposition

ρ(x) = f −1
(

K∫
f (g(x ′)) dx ′ f (g(x))

)
(3)

of the functional variable, applying the idea
(

δA[ρ[g, K ]]
δg(x)

)
K

∣∣∣∣
g=ρ

≡ δA[ρ]
δK ρ(x)

. (4)

In this paper, the mathematical basics of K -conserving (or K -constrained)
differentiation and of the formula (1) will be clarified, which is essential
for practical applications and for generalizations for wider classes of con-
straints.

2. Restricted functional derivatives

Two basic derivatives of a functional (or operator) are defined in functional
analysis. The Fréchet derivative of a functional A[ρ] at ρ(x) is defined as a lin-
ear operator F[ρ;.] that gives

F[ρ; �ρ] = A[ρ + �ρ] − A[ρ] + o[ρ; �ρ] (5a)

for any �ρ(x), with

lim
�ρ→0

o[ρ; �ρ]
‖�ρ‖ = 0, (5b)

while an operator G[ρ;.] is the Gâteaux derivative of A[ρ] at ρ(x) if it gives the
so-called Gâteaux differential,

G[ρ; �ρ] = lim
ε→0

A[ρ + ε�ρ] − A[ρ]
ε

(6)

for any �ρ(x), and is linear and continuous [3] (that F[ρ; .], or G[ρ; .], is the
derivative of A[ρ] is not denoted for simplicity). Both derivatives are defined
uniquely, and their relation is characterized by the theorem that if the Fréchet
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derivative exists at a ρ(x) then the Gâteaux derivative exists there as well and
the two derivatives are equal, as can be seen by

G[ρ; �ρ] = lim
ε→0

A[ρ + ε�ρ] − A[ρ]
ε

= lim
ε→0

F[ρ; ε�ρ] − o[ρ; ε�ρ]
ε

= lim
ε→0

{
F[ρ; �ρ] − ‖�ρ‖ o[ρ; ε�ρ]

ε ‖�ρ‖
}

= F[ρ; �ρ]. (7)

If constraint limits the changes �ρ(x) of ρ(x), the existence of a general
derivative is not needed, and the concept of a restricted derivative naturally
arises through

F |K [ρ; �K ρ] = A[ρ + �K ρ] − A[ρ] + oK [ρ; �K ρ] (8a)

for any K -conserving changes �K ρ(x) of ρ(x) of
∫

f (ρ(x))dx = K (i.e. for
�ρ(x)’s satisfying

∫
f (ρ(x) + �ρ(x))dx = K ), with

lim
�K ρ→0

oK [ρ; �K ρ]
‖�K ρ‖ = 0. (8b)

Maintaining the linearity requirement for F |K [ρ; .], except for linear K [ρ] con-
straints, ∫

h(x)ρ(x)dx = L , (9)

is not directly possible, because (�K ρ(x))1 + (�K ρ(x))2 is not K -conserving in
general; however, a corresponding requirement is ensured by writing F |K [ρ; .]
in a form with “built-in” linearity, as the form taken below. Following a similar
way of defining a restricted Gâteaux derivative G|K [ρ;.] meets a serious prob-
lem, since in general, ρ(x)+ε�K ρ(x) runs out of the set of ρ(x)’s of the given K
(for which problem section 5 gives a resolution); however, for linear constraints
(9), the restriction of the domain of G[ρ;.] is applicable to get a G|L [ρ;.], since∫

h(x) �Lρ(x) dx = 0. (10)

It is important to recognize that, contrary to the definition of F , the definition
of F |K is not unique: if F |K [ρ; .] is a K -restricted Fréchet derivative at ρ(x)

then F |K [ρ; .] + µ
∫

dx f (1)(ρ(x)) . with any µ, is that either, since

lim
�K ρ→0

∫
f (1)(ρ(x)) �K ρ(x) dx

‖�K ρ‖ = 0 (11)

(or in the usual notation,
∫

f (1)(ρ(x)) δK ρ(x)dx = 0), following from
∫

f (1)(ρ)

�K ρ = ∫
f (ρ + �K ρ) − ∫

f (ρ) + o[ρ; �K ρ] = o[ρ; �K ρ]. Note that, because



664 T. Gál / Mathematics of functional differentiation

of equation (10), the ambiguity of F |K disappears for linear constraints, that is
F |L is unique.

In a physical relation, a functional derivative usually appears through

δA[ρ]
δρ(x)

:= D[ρ(x ′); δ(x − x ′)] (12)

with δ(x − x ′) the Dirac delta function, that is D[ρ; .] is written as

D[ρ; �ρ] =
∫

δA[ρ]
δρ(x)

�ρ(x) dx, (13)

where D[ρ; .] can be the Fréchet or the Gâteaux derivative either. Keeping that
representation (embodying the linearity of D[ρ; .]) for restricted derivatives as
well, a restricted Fréchet derivative or, for K = L, a restricted Gâteaux derivative
is given as

D|K [ρ; �K ρ] =
∫

δA[ρ]
δρ(x)

∣∣∣∣
K

�K ρ(x) dx (14)

(for all �K ρ(x)’s). Now, the ambiguity of F |K [ρ; .] appears as the ambiguity of
δA[ρ]
δρ(x)

∣∣∣
K

:

δA[ρ]
δρ(x)

∣∣∣∣
K

+ µ f (1)(ρ(x)) (15)

(with µ arbitrary), which, however, includes linear f (ρ)’s as well and holds even
for Gâteaux δA[ρ]

δρ(x)

∣∣∣
L

’s, because of equation (10).

3. The most general form for constrained derivatives

With the definition of restricted derivatives, the K -conserving differentiation
formula can be written as

δA[ρ]
δK ρ(x)

= δA[ρ]
δρ(x)

∣∣∣∣
K

− f (1)(ρ(x))

K

∫
f (ρ(x ′))

f (1)(ρ(x ′))
δA[ρ]
δρ(x ′)

∣∣∣∣
K

dx ′, (16)

since the chain rule

δA[ρ[g]]
δg(x)

=
∫

δA[ρ]
δρ(x ′)

∣∣∣∣
K

δρ(x ′)
δg(x)

dx ′ (17a)

can be proved for functionals ρ(x)[g] for which
∫

f (ρ(x)[g]) dx = K (17b)
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for any g(x ′) (see Appendix), so the derivation of equation (1) holds also with
δA[ρ]
δρ(x)

∣∣∣
K

(which of course can be δA[ρ]
δρ(x)

if it exists) in the place of δA[ρ]
δρ(x)

. It can be

seen that equation (16) yields a unique δA[ρ]
δK ρ(x)

, cancelling the ambiguity (15) of
restricted derivatives (appearing in the form of “differentiational constants” µ),
since

µ f (1)(ρ(x)) − f (1)(ρ(x))

K

∫
f
(
ρ(x ′)

)
f (1) (ρ(x ′))

µ f (1)(ρ(x ′)) dx ′ = 0. (18)

Here and in the next section, the question will be examined as in what sense the
formula (16) can be considered as the one for K -conserving constrained differ-
entiation.

To start with, consider the essential property [1,2] of δ
δK ρ

derivatives that
δA[ρ]

δK ρ(x)
gives D[ρ; �∗

K ρ] for the component

�∗
K ρ(x) =

∫ {
δ(x − x ′) − 1

K

f (ρ(x))

f (1)(ρ(x))
f (1)(ρ(x ′))

}
�ρ(x ′)dx ′ (19)

of any �ρ(x) via

D[ρ; �∗
K ρ] =

∫
δA[ρ]

δK ρ(x)
�ρ(x)dx . (20)

Note that �∗
K ρ(x), for which

∫
f (1)(ρ(x)) �∗

K ρ(x) dx = 0, (21)

is not a K -conserving change in general; only first-order K -conserving variations
δK ρ(x) satisfy (by definition) equation (21). The general (linear) form of a pro-
jection �ρ → �∗

K ρ, with the requirement of being an identity for �∗
K ρ(x)’s, is

�∗
K ρ(x) =

∫ {
δ(x − x ′) − u(x)

f (1)(ρ(x))
f (1)(ρ(x ′))

}
�ρ(x ′)dx ′ (22)

with
∫

u(x) dx = 1, (23a)

that is

u(x) = q(x)∫
q(x ′) dx ′ (23b)
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(for
∫

q(x) dx �= 0), which yields
∫

δA[ρ]
δρ(x)

∣∣∣∣
K

�∗
K ρ(x) dx =

∫ {
δA[ρ]
δρ(x)

∣∣∣∣
K

− f (1)(ρ(x))

∫
u(x ′)

f (1)(ρ(x ′))
δA[ρ]
δρ(x ′)

∣∣∣∣
K

dx ′
}

�ρ(x) dx (24)

(which gives D|K [ρ; δK ρ] for �∗
K ρ(x) = δK ρ(x)).

The formula

δA[ρ]
δ′

K ρ(x)
= δA[ρ]

δρ(x)

∣∣∣∣
K

− f (1)(ρ(x))

∫
u(x ′)

f (1)(ρ(x ′))
δA[ρ]
δρ(x ′)

∣∣∣∣
K

dx ′, (25)

fulfils the most essential requirement on a proper treatment of constrained func-
tional differentiation; namely, for functionals that are equal on a set of ρ(x)’s
restricted by equation (2), whose restricted derivatives δ

δρ(x)

∣∣∣
K

therefore may dif-

fer only by a c f (1)(ρ(x)), i.e.

δA[ρK ]
δρ(x)

∣∣∣∣
K

− δB[ρK ]
δρ(x)

∣∣∣∣
K

= c f (1)(ρ(x)), (26)

formula (25) gives equal derivatives,

δA[ρK ]
δ′

K ρ(x)
= δB[ρK ]

δ′
K ρ(x)

, (27)

cancelling any c f (1)(ρ(x)). From that property then the naturally expectable

δb(K [ρ])
δ′

K ρ(x)
= 0, (28)

follows straight, with arbitrary function b(K ), since δb(K [ρ])
δρ(x)

= ∂b(K )
∂K f (1)(ρ(x)).

Requiring the property (27), in itself leads to the formula (25) as well, since
equation (26) gives

∫
u(x)

f (1)(ρ(x))

δA[ρ]
δρ(x)

∣∣∣∣
K

dx −
∫

u(x)

f (1)(ρ(x))

δB[ρ]
δρ(x)

∣∣∣∣
K

dx = c

with an u(x) satisfying equation (23) (as the operator to act on both sides of
equation (26) has to be linear to get a proper c, dividable into two parts for the
two δ/δ′

K ρ derivatives), yielding equation (25).
u(x) in equation (25) can be both some functional of ρ(x) and a ρ(x)-

independent function. A possible choice, e.g. is u(x) = δ(x − x0), leading to

δA[ρ]
δ′

K ρ(x)
= δA[ρ]

δρ(x)

∣∣∣∣
K

− f (1)(ρ(x))
1

f (1)(ρ(x0))

δA[ρ]
δρ(x0)

∣∣∣∣
K

. (29)
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That the main essence of constrained differentiation is embodied by the general
form (25), gives some more ‘understanding’ of why, in the formula (16), the mul-
tiplyer of δA[ρ]

δρ(x)

∣∣∣
K

in the integrand remains undifferentiated in getting constrained
second derivatives, as shown through the example of number-conserving deriva-
tives (where f (ρ) = ρ) in [4].

4. Requirement from independence of constraint

So far, in sections 2 and 3, the concrete form (2) of constraints has not
been utilized, hence the general δC[ρ]

δρ(x)
, emerging from the general constraint form

C[ρ] = 0, can be written in the place of f (1)(ρ(x)) in all expressions there. For
constraints (2), however, a mathematically meaningful choice of u(x) in equation
(25) arises, giving the formula (16).

In the case of number (N ) conservation, f (ρ) = ρ (see remark concern-
ing the origin of the name later), the choice q(x) = ρ(x) yields a fixation of
δA[ρ]
δρ(x)

∣∣∣
N

that is determined by its weighted average
∫

ρ(x)∫
ρ(x ′) dx ′

δA[ρ]
δρ(x)

∣∣∣∣
N

dx . Why

that choice is special mathematically is that for functionals A[ρ] homogeneous
of degree zero, that is

A[λρ] = A[ρ] (30)

for any x-independent λ, it (i.e. equation (16), with f (ρ) = ρ) gives

δA[ρ]
δN ρ(x)

= δA[ρ]
δρ(x)

, (31)

since from the homogeneity (30),∫
ρ(x)

δA[ρ]
δρ(x)

dx = 0, (32)

follows (if A[ρ] is differentiable). A degree-zero homogeneous functional, on the
other hand, is special since it is independent of N (and vice versa), as A[ρ] =
A[ ρ∫

ρ

∫
ρ] = A[ ρ∫

ρ
], and for N -independent functionals, an N -conservation con-

straint yields no restriction on their variations, therefore equation (31) is expect-
able, that is the N -constraint has no effect on their differentiation. (Note that
equation (31) for degree-zero homogeneous A[ρ], as a condition, along with the
general form (25), gives back q(x) = ρ(x), that is that choice is equivalent with
the requirement of equation (31).)

Thus, for f (ρ) = ρ, the formula (16) is superior mathematically over other
forms (25); but for other constraints (2), can equation (16) still be considered as
special among the forms (25)? Can an independence of K , in general, be under-
stood? Contrary to the case of the N -constraint, where the N -dependence could
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be naturally separated as ρ(x) = (∫
ρ(x ′)

)
ρ(x)∫
ρ(x ′) , there is no trivial intuitive way

to answer this question of separation of K in ρ(x). The following generalization
of the concept of homogeneity of degree m, however, gives a natural solution:

A[ f −1(λ f (ρ))] = λm A[ρ]. (33)

Equation (33) can be considered as a generalized, deformed homogeneity
(K -homogeneity) of degree m, and yields

∫
f (ρ(x))

f (1)(ρ(x))

δA[ρ]
δρ(x)

dx = m A[ρ]. (34)

In this way, an understanding of the particular choice q(x)= f (ρ(x)) is obtained,
the formula (16) giving

δA[ρ]
δK ρ(x)

= δA[ρ]
δρ(x)

(35)

for K -independent (i.e. by definition, degree-zero K -homogeneous) functionals
A[ρ], where the K -constraint is expectable to have no effect on differentiation.

The requirements (27) and (35) practically mean that the K -conserving
derivative of a functional A[ρ] at a ρK (x), as given by equation (16), is defined
as the unrestricted derivative of the degree-zero homogeneous extension of A[ρ],

A0
K [ρ] := A

[
f −1

(
K∫

f (ρ(x)) dx
f (ρ)

)]
(36)

at ρK (x), on the basis of

δA[ρK ]
δK ρ(x)

= δA0
K [ρK ]

δK ρ(x)
= δA0

K [ρK ]
δρ(x)

, (37)

where only equations (27) and (35) have been applied, utilizing the two spe-
cial properties of A0

K [ρ], namely, that it gives A[ρ] for ρK (x)’s (i.e. ρ(x)’s of∫
f (ρ(x))dx = K ), and it is independent of K . Thus,

δA[ρ]
δK ρ(x)

:=
δA

[
f −1

(
K∫
f (ρ)

f (ρ)
)]

δρ(x)
, (38)

which yields the formula (16) (via the chain rule (17) applied for equation (36)),
and sums up the mathematical basis behind the derivation of equation (1) in [1,
2] (see the application of equation (4), with the decomposition (3)). In connec-
tion with this approach (38), it is important to note that the extension

ρ0
K [ρ] = f −1

(
K∫

f (ρ(x ′)) dx ′ f (ρ(x))

)
(39)
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from a ρK (x) is unique, that is it is the only extension that (i) reduces to ρK (x) for
ρK (x) and (ii) is independent of K , which can also be seen by the following: any
ρ(x) can be written as ρ(x) = f −1(

∫
f (ρ)

K f (ρK (x))) [with some uniquely deter-
mined ρK (x): ρK (x) = f −1( K∫

f (ρ)
f (ρ(x)))], therefore for an A0∗

K [ρ] satisfying the

two conditions A0∗
K [ρK ] = A[ρK ] (for any ρK (x)) and independence of K ,

A0∗
K [ρ] = A0∗

K

[
f −1

(∫
f (ρ)

K f (ρK )
)]

= A0∗
K [ρK ] = A[ρK ]

= A
[

f −1
(

K∫
f (ρ)

f (ρ)
)]

, (40)

that is A0∗
K [ρ] is unique (for any A[ρ], including A[ρ] = ρ), and is A0

K [ρ]. For
that unique extension ρ0

K [ρ],
∫

f (ρ0
K [ρ](x)) dx = K , (41)

also holds (for any ρ(x)), which was used as a basic requirement in [2] to obtain
the proper decomposition (3) (which, with g(x) = ρ(x), gives ρ0

K [ρ]).

5. K -conserving derivative as the complementer of a derivative with respect
to K

For f (ρ) = ρ, the superiority of equation (16) (yielded by the requirement
given by equations (30) and (31)) among the forms (25), is also shown by the
fact that an N -conserving derivative emerges as

δA[ρ]
δN ρ(x)

= δA[ρ]
δρ(x)

−
(

∂A[Nn]
∂ N

)
n(x ′)

(42)

(with the shape n(x) of ρ(x) defined as n(x) := ρ(x)∫
ρ(x ′) dx ′ , that is ρ(x) = Nn(x)),

since(
∂ A[N n(x ′)]

∂ N

)
n(x ′)

=
∫

δA[ρ(x ′)]
δρ(x)

(
∂ρ(x)

∂ N

)
n(x)

dx =
∫

δA[ρ(x ′)]
δρ(x)

ρ(x)

N
dx . (43)

Hence,

δA[ρ]
δρ(x)

= δA[ρ]
δN ρ(x)

+
(

∂ A[Nn]
∂ N

)
n(x ′)

(44)

by which a differential D[ρ; �ρ] = ∫
δA[ρ]
δρ(x)

�ρ(x) dx splits as
∫

δA[ρ]
δρ(x)

�ρ(x) dx =
∫

δA[ρ]
δN ρ(x)

�N ρ(x) dx +
(

∂ A[Nn]
∂ N

)
n(x ′)

�N , (45)
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two components vanishing in equation (45). The derivative (43) can be identified
as the shape-conserving derivative [1]

δA[ρ]
δn(x ′)ρ(x)

≡ 1
N

∫
ρ(x)

δA[ρ]
δρ(x)

dx . (46)

Equation (44) can alternatively be written as

δA[ρ]
δρ(x)

= 1
N

(
δA[Nn]
δ1n(x)

)
N

+
(

∂ A[Nn]
∂ N

)
n(x ′)

, (47)

using

1
N

(
δA[Nn]
δ1n(x)

)
N

= 1
N

∫
δA[ρ]
δρ(x ′)

N
δn(x ′)
δ1n(x)

dx ′ = δA[ρ]
δN ρ(x)

, (48)

or directly through

δA[Nn]
δρ(x)

=
∫ (

δA[Nn]
δn(x ′)

)
N

δn(x ′)
δρ(x)

dx ′ +
(

∂ A[Nn]
∂ N

)
n

δN

δρ(x)
.

Equation (47) represents a conceptual alternative to

δA[ρ]
δρ(x)

= δA[ρ]
δN ρ(x)

+ δA[ρ]
δn(x ′)ρ(x)

. (49)

The above decomposition (equations (44), (47) and (49)) of a functional
derivative can be generalized for linear K -constraints, equation (9), through
decomposing the functional variable as ρ(x) = L l(x), with the “L-shape” l(x)

of ρ(x) defined as

l(x) := ρ(x)∫
h(x ′)ρ(x ′) dx ′ (50)

(i.e.
∫

h(x) l(x) dx = 1), yielding

δA[ρ]
δρ(x)

= δA[ρ]
δLρ(x)

+
(

∂ A[L l]
∂L

)
l(x ′)

(51)

and the other corresponding relationships. The further generalization embracing
an arbitrary K -constraint can only be done formally, there being no meaning of
“differentiating with respect to K of the functional variable only, while conserv-
ing the other part of the variable” (except for homogeneous K [ρ]′s, leading to
the concept of “H-shape”).

The decomposition of a functional derivative into a number-conserving and
a shape-conserving part gets special conceptual relevance with respect to the
density-shape based reformulation [5] of the density functional theory (DFT) of
many-electron systems [6] into a “density-shape functional theory”. (The name
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“number-conserving derivative” was taken from an “unofficial” use by some the-
oreticians in DFT, where the fixation of the particle number N is needed, to
term N -restricted derivatives.) With the use of N -conserving differentiation, the
following relationship connecting the derivative of a density-shape functional
A′[n] ≡ A[ρ[n]] and the derivative of the corresponding density functional A[ρ]
arises:

δA′[n]
δ1n(x)

= δA[N [n] n]
δ1n(x)

=
(

∂ A[Nn]
∂ N

)
n(x ′)

δN

δ1n(x)
+ δA[ρ]

δN ρ(x)
N

= N
δA[ρ]
δρ(x)

∣∣∣∣
(±)

+
(

∂ A[Nn]
∂ N

∣∣∣∣
(±)

)

n(x ′)

(
δN

δ1n(x)
− N

)
(52a)

or

δA′[n]
δ1n(x)

= δA[ρ]
δn(x ′)ρ(x)

δN

δ1n(x)
+ δA[ρ]

δN ρ(x)
N

= N
δA[ρ]
δρ(x)

∣∣∣∣
(±)

+ δA[ρ]
δn(x ′)ρ(x)

∣∣∣∣
(±)

(
δN

δ1n(x)
− N

)
. (52b)

(The last equality in equation (52) is for density functionals A[ρ] having an
unconstrained derivative, or at least, right/left-side derivative δA[ρ]

δρ(x)

∣∣∣±.) Note

that the account for N -conservation is essential in the case of density-shape -
functional derivatives, as no meaning is associated to a change in norm of n(x).

The derivative
(

∂ Ev[Nn]
∂ N

)
n(x)

of the ground-state energy density functional,

for the ground-state density corresponding to a given external potential v(x), is
closely related to the derivative of the ground-state energy Egs(N , v) with respect
to the particle number N , namely, they are equal, since

(
∂ Ev[Nn]

∂ N

)
n(x ′)

=
∫

δEv[ρ]
δρ(x)

ρ(x)

N
dx =

∫
µ

ρ(x)

N
dx = µ = ∂ Egs(N , v)

∂ N
, (53)

using the Euler equation for the ground-state density of density-functional the-
ory in the second equality.

Finally in this section, the opportunity is taken to note an incorrectness in
[1]: It is stated in [1] (in the first sentence of the last paragraph on page 2,) that
there is a false view in density-functional theory that the N -conserving derivative
of a functional is determined only up to an arbitrary constant (in x), while that
ambiguity is, correctly, referred (in DFT) to the N -restricted derivative. [That
was an unfortunate reaction by the author to the opinion of some DFT theore-
ticians (not necessarily those referenced in the last paragraph on page 2) about
the N -conserving derivative formula that a unique derivative over an N -restricted
domain is a nonsense.]
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6. Constrained derivatives as deformed Gâteaux derivatives

As pointed out in section 2, the Gâteaux definition of unrestricted derivatives
cannot simply be restricted to obtain a definition for a K -restricted derivative. First,
it would be a senseless definition, since the straight path ρK (x) + ε �K ρ(x) runs
out of the restricted domain of ρK (x)’s (except for K = L), which gets particu-
lar relevance in the case of functionals defined only over the set of ρK (x)’s. Sec-
ond, the essential connection (7) between Gâteaux and Fréchet derivatives would
not apply for restricted derivatives (as A[ρ + ε �K ρ] − A[ρ] cannot be given as
F |K [ρ; ε�K ρ] − oK [ρ; ε�K ρ]), that is the existence of K -restricted Fréchet deriv-
ative would not mean anything for the corresponding restricted Gâteaux derivative.

To treat the above problem, that is to have a proper restricted Gâteaux
derivative concept, a generalization of the concept of the Gâteaux derivative is
necessary, getting to a generalized, deformed Gâteaux derivative. For that, the
following deformation of the linear path ρ(x)+ε �K ρ(x) needs to be introduced:

f −1
(

K∫
f (ρ(x ′) + ε �K ρ(x ′)) dx ′ f (ρ(x) + ε �K ρ(x))

)
, (54)

which yields a ρK (x) for any value of ε, and for a ρK (x) (i.e. for ρ(x) at ε = 0,
and for ρ(x) + �K ρ(x) at ε = 1), reduces to it. With the above general K -con-
serving path, then the following K -restriction of the Gâteaux derivative emerges:

G|K [ρ; �K ρ] := lim
ε→0

A
[

f −1
(

K∫
f (ρ+ε �K ρ)

f (ρ + ε �K ρ)
)]

− A[ρ]
ε

, (55)

which is coherent conceptually, and has the proper connection to the
K -restricted Fréchet derivative, that is exists if F |K [ρ; .] exists:

G|K [ρ; �K ρ] = lim
ε→0

1
ε

(∫
δA[ρ]
δρ(x)

∣∣∣∣
K

{
ρ0

K [ρ +ε�K ρ](x) − ρ(x)
}

dx

+oK [ρ; {. . .}]
)

= lim
ε→0

1
ε

(∫
δA[ρ]
δρ(x)

∣∣∣∣
K

{
dρ0

K [ρ + ε�K ρ](x)

dε

∣∣∣∣∣
ε=0

ε + o(0; ε)

}
dx

+oK [ρ; {. . .}]
)
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=
∫

δA[ρ]
δρ(x)

∣∣∣∣
K

{∫
δρ0

K [ρ](x)

δρ(x ′)
�K ρ(x ′)dx ′ + lim

ε→0

o(0; ε)

ε

}
dx

+ lim
ε→0

(∥∥ρ0
K [ρ + ε�K ρ] − ρ

∥∥
ε

oK [ρ; {ρ0
K [ρ + ε�K ρ] − ρ}]∥∥ρ0

K [ρ + ε�K ρ] − ρ
∥∥

)

=
∫ ∫

δA[ρ]
δρ(x)

∣∣∣∣
K

δρ(x)

δK ρ(x ′)
dx�K ρ(x ′)dx ′ (56)

(
∥∥ρ0

K [ρ + ε�K ρ] − ρ
∥∥/

ε being bounded in ε), giving

G|K [ρ; �K ρ] =
∫

δA[ρ]
δK ρ(x)

�K ρ(x) dx . (57)

Equation (57) constitutes a strong mathematical basis for the K -conserv-
ing derivative (16) (and gives an intuitive interpretation), showing that it emerges
as a Gâteaux (i.e. directional) derivative over the restricted set of ρK (x)’s. Also,
the above origination of δ/δK ρ throws more light on the mathematical basis of
the derivation of the formula (16) in [1,2], that is on the decomposition (3).
Note that equation (57) determines δA[ρ]

δK ρ(x)
uniquely (contrary to the definition

of a restricted Fréchet derivative), except for linear constraints, for which equa-
tion (10). It follows from the above theorem as well that G|K exists more gen-
erally than F |K , similarly to the case of the unrestricted Gâteaux and Fréchet
derivative, indicating the relevance of equation (55) for physical applications, the
Fréchet definition for a derivative being too strong for a general applicability in
physics.

It is important to point out that the generalization of the Gâteaux
derivative for nonlinear (K -) paths is possible only on the K -restricted sets
(and not on the whole set of ρ(x)’s), contrary to its special case for K = L,
that is, the (original) Gâteaux derivative G[ρ; .] (which is defined on the set
of all �ρ(x)’s, not only for �Lρ(x)’s). For, the existence of a K -deformed
Gâteaux derivative on an unrestricted set leads to a contradiction, as on one
hand, an unrestricted K -deformed Gâteaux derivative should have the form
as in equation (57) because of linearity in �ρ(x), and on the other hand,
for linear constraints (where it should reduce to G[ρ; .]), should equal the
(unrestricted) Fréchet derivative, if that exists. [Only for linear constraints,
the difference between δA[ρ]

δρ(x)
and δA[ρ]

δK ρ(x)
cancels out in equation (57) (because

of equation (10)), “allowing” the existence of an unrestricted L-deformed
Gâteaux derivative, which is just G[ρ; .]]. That nonexistence of an unrestricted
K -deformed Gâteaux derivative can be interpreted as the impossibility of rotat-
ing a K -conserving path around a ρK (x) without deformation to get a cor-
responding path for a general �ρ(x), except for L-conserving (i.e. straight)
paths.
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It has to be emphasized here that the ambiguity of restricted Fréchet deriv-
atives can also be fixed as equation (16), obtaining the concept of a constrained
Fréchet derivative (and completing the analogy with equation (7), F |K [ρ; .] giv-
ing directly G|K [ρ; .] in this way).

Finally, it is important to underline that the two originations of the K -con-
serving derivative (16) given in the present and the preceding sections apply for
invertible f (ρ)’s, noting though that independence of K could be defined by the
more general equation (34), with m=0, as well.

7. Summary

The mathematical basics of K -conserving functional differentiation, and
of the K -conserving derivative formula (16), have been clarified, which is
essential for its physical use (as [7], in the modelling of simultaneous dew-
etting and phase separation in thin liquid films [8]), for its conceptual appli-
cation (see [1,4] in density-functional theory [6], and section 5), and for
its generalization for wider classes of constraints (as [9] for simultaneous
K -constraints).

On the basis of the most substantial requirement a (properly defined)
K -conserving derivative has to satisfy, the general form (25) for them has been
derived. Showing the superiority of the formula (16) over other forms (25) in the
case of N -conservation (the simplest form of the K -constraint (2)), it has been
pointed out that for N -independent functionals, equation (16) yields the uncon-
strained derivative, in accordance with natural expectations. Via a generalization
of the concept of homogeneity of functionals, then the same arises for K -inde-
pendent functionals, that is the K -constraint has no effect on the differentiation
of them. These results yield a method for generalizations of K -conserving differ-
entiation [9].

A K -conserving derivative can be considered as a part of the unconstrained,
that is, full, derivative, the other part of which has been shown (in section 5) to
be a simple derivative with respect to K for linear K -constraints. Connections
with the derivative with respect to the “shape” of the functional variable and
with the shape-conserving derivative, together with their use in density-functional
theory [6], are also discussed in section 5.

Yielding an intuitive interpretation of K -conserving derivatives, it has also
been shown that K -conserving derivatives can be originated as directional deriv-
atives, via a generalization of the Gâteaux derivative for nonlinear K -conserving
paths, equation (55).

Finally, a remark on terminology: A derivative has been termed “con-
strained” if it does not emerge through a simple restriction of domain of validity
but has a modified definition, to handle a constraint properly; hence it cannot
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simply be chosen to be the unrestricted derivative if that exists (contrary to a
restricted Fréchet derivative, e.g.).

Appendix: proof of equation (17a)

The chain rule (17a) can be proved in the following way for Fréchet deriv-
atives:

A[ρ[g + �g]] − A[ρ[g]] =
∫

δA

δρ(x)

∣∣∣∣
K

[ρ[g]] {ρ[g + �g](x) − ρ[g](x)} dx

+oA
K [ρ[g]; {. . .}]

=
∫

δ A

δρ(x)

∣∣∣∣
K

[ρ[g]]
{∫

δρ[g](x)

δg(x ′)
�g(x ′)dx ′ + oρ(x)[g;�g]

}
dx

+ oA
K [ρ[g]; {. . .}]

=
∫ ∫

δA[ρ]
δρ(x)

∣∣∣∣
K

δρ[g](x)

δg(x ′)
dx�g(x ′)dx ′

+
∫

δA[ρ]
δρ(x)

∣∣∣∣
K

oρ(x)[g;�g]dx + oA
K [ρ[g]; {. . .}] (A.1)

with

lim
�g→0

oA
K [ρ[g]; {ρ[g + �g] − ρ[g]}]

‖ρ[g + �g] − ρ[g]‖
‖ρ[g + �g] − ρ[g]‖

‖�g‖ = 0

and

lim
�g→0

oρ(x)[g; �g]
‖�g‖ = 0,

noting that ρ[g+�g]−ρ[g] is a K -conserving change in ρ(x), according to equa-
tion (17b). It is important that

∫
δA[ρ]
δρ(x ′)

∣∣∣
K

δρ(x ′)
δg(x)

dx ′ is unique since the ambiguity

+µ f (1)(ρ(x)) of δA[ρ]
δρ(x)

∣∣∣
K

is cancelled in that expression, as

∫
µ f (1)(ρ[g](x ′))δρ[g](x ′)

δg(x)
dx ′ = µ

δ
∫

f (ρ[g](x ′))dx ′

δg(x)
= µ

δK

δg(x)
= 0, (A.2)

because of (17b).
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Equation (17a) also holds if δρ[g](x ′)
δg(x)

is only a Gâteaux derivative; then
δA[ρ[g]]
δg(x)

also is a Gâteaux derivative. For,

lim
ε→0

A[ρ[g + ε�g]] − A[ρ[g]]
ε

= lim
ε→0

1
ε

(∫
δA

δρ(x)

∣∣∣∣
K

[ρ[g]] {ρ[g + ε�g](x) − ρ[g](x)} dx + oA
K [ρ[g]; {. . .}]

)

=
∫

δA[ρ]
δρ(x)

∣∣∣∣
K

∫
δρ[g](x)

δg(x ′)
�g(x ′)dx ′dx

+ lim
ε→0

‖ρ[g + ε�g] − ρ[g]‖
ε

oA
K [ρ[g]; {ρ[g + ε�g] − ρ[g]}]

‖ρ[g + ε�g] − ρ[g]‖
=

∫ ∫
δA[ρ]
δρ(x)

∣∣∣∣
K

δρ[g](x)

δg(x ′)
dx�g(x ′)dx ′ (A.3)

and equation (A.2).
For K = L, equation (17a) is valid for Gâteaux derivatives (all deriva-

tives in equation (17a) are Gâteaux, embracing the case, of course, in which
δρ[g](x ′)/δg(x) is Fréchet) as well, in the proof of which also (A.2) is the new
element, compared to the unconstrained case.
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P. Blanchard and E. Brüning, Mathematical Methods in Physics (Birkhäuser, Berlin, 2003).
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